

### HoloVizio

#### The world first glasses-free 3D cinema system

Tibor Balogh CEO & Founder Holografika, Hungary www.holografika.com

# 3D Displaying basic rules

- The goal of displaying is to provide perfect representation of real/syntetic scenes
  - life-like view
  - the ultimate display will be like a window...
- True 3D displaying reconstructing the light-field as present in the natural view
  - producing light beams with the same parameters the human perception is capable to process: direction, position, intensity, color (*but polarization, phase*)
  - "...Let the display work, not the brain..."



HOLOGRA



# Light Field

- General representation of 3D information that considers a 3D scene as the collection of light rays that are emitted or reflected from 3D scene points. (M. Levoy, and P. Hanrahan, "Light Field Rendering", 1996.)
- The visible light beams are described with respect to a reference surface (screen) using the light beams' intersection with the surface and angle.
- The LF is defined as a function of position (2 parameters) and direction (2 parameters): L(x,y,[z],Θ,Φ)



#### HOLOGRAFIKA

# 3D Displaying basic rules

- Additional independent variant to X, Y :  $\Phi$ 
  - emission range FOV
  - number of independent beams in the range Angular resolution (\$) determining FOD

FOV / n =  $\phi$ 

- Vertical / horizontal parallax
  - reducing the number of beams by omitting the vertical parallax
  - systems with different horizontal and vertical angular resolution HOP systems



#### HOLOGRAFIKA

# 3D Displaying basic rules

#### • Direction selective light emission

- common for all systems having a screen, conforming with current displaying conventions (also for the outer surface of volumetric systems)
- General approach: to create a light emitting surface, where we are able to emit different light beams from each point in a controlled way
   defining the output
  - defining the output





# **Objective** – subjective displaying

#### Light field

- 3D scene centric
- Viewer independent, spatial positions addressed, no contradictions
- Unlimited number of freely moving viewers by nature
- Continuous and correct parallax in the FOV
- FOD function of the angular resolution
- Inherent 3D approach



#### View based

- Viewer centric
- Viewer position dependent view, contradictions – health risks
- Single viewer, or positioning (sweet point), or tracking
- jumpy character (borders btw discrete views) or limited FOV, invalid zones
- in the practice flat layered demos only
- Philosophically coming from 2D





# HoloVizio system

- Optical modules
  - project light beams to hit the points of a screen with multiple beams under various angles of incidence
- Holographic screen
  - direction selective property
  - the screen diffusion angle  $\delta$  is equal to the angle  $\gamma$  between the neighboring modules
- Emission angle geometry determined
  - no optical road-blocks like at Fresnel, or lenticular lenses





### HoloVizio system

- Light field reconstruction instead of views, specific distributed image organization
  - the projected module image
     not a 2D view of the final 3D image
  - each view of the 3D image comes from more modules
  - continuous motion parallax no discrete border between views







- The HoloVizio monitors
  - HoloVizio 128 WD, WLD
     10 Mpixel, 32" (16:9)
  - 50 degrees FOV
  - angular resolution 0.8 degrees
  - 2D equivalent image resolution 512x320
  - up to 4 DVI inputs





- The large-scale HoloVizio systems
  - HoloVizio 640RC, 720 RC
    50 Mpixel, 72", (16:9)
  - 50–70 degrees FOV
  - angular resolution 0.9 degrees
  - 2D equivalent image resolution 1344x768
  - Dual Gigabit Ethernet input
  - Control system+PC based render cluster



#### 640RC Demonstration





- The digital signage HoloVizio kiosk system
  - HoloVizio 240P
    - 11,5 Mpixel, 45" standing format
  - 40 degrees FOV
  - 2D equivalent image resolution 600 x 800
  - LED colors
  - Gigabit Ethernet input
  - Control system + 3 PC
  - Easily adaptable for various installations



Make CROWD with HoloVizio 3D display!

CeBIT 2009



- The open architecture HoloVizio monitor
  - HoloVizio 64WLT
    60 Mpixel, 43" (16:9)
  - 50 degrees FOV
  - 2D equivalent image resolution 1280 x 768 (WXGA)
  - LED colors
  - 9 mm screen thicknes
  - Multiple DVI inputs





- The full angle HoloVizio monitor
  - HoloVizio 80WLT
     78 Mpixel, 30" (16:10)
     180 degrees FOV
     total freedom 3D experinece, no invalid zones, no repeated views
  - 2D equivalent image resolution 1280 x 768 (WXGA)
  - LED colors
  - Multiple DVI inputs





- The world first glasses-free
   3D cinema system
  - HoloVizio C80
  - 3,5 m dia reflective Holoscreen (140")
  - no glasses, no optical contradiction
  - LED based 3D projection unit
  - exceptional 1500 Cd/m<sup>2</sup> brightness
  - 40 degrees FOV
  - 2D compatible
  - Fitting cinema rooms, 3D simulators





#### HOLOGRAFIKA

### HoloVizio software system

- Integrate existing applications
   OpenGL Wrapper
- Display 3D models in Real-time
  - ModelViewer (OpenGL Wrapper)
- Display pre-rendered 3D models/scenes
  - rendering converting to 3D
- Display real-life 3D scenes
  - capturing converting to 3D





# **3D Light Field Content**

3D scene representations

- Model based (geometry aware)
- Image based
  - 3D image / video input formats
    - Large number of image streams (~100)
      - "Hi-fi"
    - Fewer image streams (9-21)
      - interpolation, extrapolation
      - quality vs. real time
    - Few image streams + depth streams
      - fast, real-time rendering







16 Input images: Interactive Visual Media group at Microsoft Research.



# **3D Light Field Content**

#### 3D scene representation

- Scalability
  - 2D
  - 2 View (stereo)
  - Narrow angle (few-view, multi-view)
  - Wide angle (Light Field)
- Compatibility
  - 2D
  - conversion into various 3D formats
- Formats
  - L&R streams frame compatible formats
  - Image(s) + depth map(s) (MVD)
  - Multiview coding (MVC)









# **3D Light Field Content**

#### Compression

- compression used in 3D come from 2D
- MPEG4 AVC / H.264 MVC
  - remove spatial redundancy



Source: http://mpeg.chiariglione.org/technologies/mpeg-4/mp04-mvc/index.htm

#### HOLOGRAFIKA

# **3D Light Field Content - Acquisition**

- Computer generated animation solved
  - Just rendering time, avoid 2D after effects, etc.
- Live scene acquisition
  - if user expectation is wide FOV at the display side, at the acquisition you have to collect information from the same range
  - wide base-line camera arrangements
    - Free-viewpoint TV
  - TV programs talk shows, studio arrangements - can be solved by multiple cameras or camera arrays
  - 3D cinema film shooting equipment to be developed
- 3D/3D conversion
  - stereo pairs into multiview



#### HOLOGRAFIKA

# **Professional applications**

- Oil&gas exploration, geological data visualization → no-glasses, true 3D tool
- Medical surgical planning → authentic visualization
- Museums, Edutainment, Entertainment, Theme parks → real 3D, interactions
- Military, Security, Simulation, Air traffic control enhanced information content
- Event rental → visually striking appearance
- Scientific visualization, VR → precise displaying of large 3D datasets
- CAD automotive, molecular → collaborative use
- 3D Telepresence → realistic feeling of presence, direction selective communication in multiplayer scenarios, eye contact





# Medical applications

- CT, MR, PET, US image-based diagnostics
- Operation planning
- Remote surgery
- Education
- Medical simulators









- Changing times:
  - interactive exhibits to attract more visitors
  - life-like 3D impressions, realistic interactions
  - protect valuable treasures
  - multiplication of exhibit capability
  - 3D content:
  - AR with supplementary information (edutainment)
  - interactive applications
  - storytelling









Interaction tools





Gesture detection system.



Voice detection.



Tracking system.



- Free viewpoint system
  - no limits for visitors
- Flexible arrangements
  - individual, island, immersive display blocks









3D display in island configuration showing seperated items



#### Tele-Immersion concept



Tele-Immersion Room 3



### Theme-parks

#### Immersive systems

- towards Gigapixel displays
- 3D, revival for projection technologies, pixel/\$ rate
- Large-scale 3D visualization
  - CAVE systems' market









### Theme-parks

- Theme park technologies
  - 3D attractions to stimulate people
  - interactivity to be involved
  - immersive, life-like advantures
  - attraction preparation phase queuing entertainment
- 3D Virtual aquarium
  - edutainment
  - combinative content
  - cost-effective
  - technologically feasible
- Other potential projects







# Thank you



#### **Questions?**

www.holografika.com

